
Information Sciences 264 (2014) 230–259
Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier .com/locate / ins
Using agents to manage Socio-Technical Congruence in a Global
Software Engineering project
0020-0255/$ - see front matter � 2014 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ins.2014.01.009

⇑ Corresponding author. Tel.: +34 645921751.
E-mail addresses: javier.portillo@uclm.es (J. Portillo-Rodríguez), aurora.vizcaino@uclm.es (A. Vizcaíno), mario.piattini@uclm.es (M.

sarah.beecham@lero.ie (S. Beecham).
Javier Portillo-Rodríguez a,⇑, Aurora Vizcaíno a, Mario Piattini a, Sarah Beecham b

a Alarcos Research Group (University of Castilla-La Mancha), Paseo de la Universidad, 4 13071 Ciudad Real, Spain
b Lero-The Irish Software Engineering Research Centre, University of Limerick, Ireland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 17 June 2012
Received in revised form 13 October 2013
Accepted 3 January 2014
Available online 11 January 2014

Keywords:
Global Software Engineering
Socio-Technical Congruence
Software agents
In Global Software Engineering (GSE) there are a number of communication and coordination
challenges which are brought about by the factor of distance. Measuring Socio-Technical
Congruence (STC) is, however, presented as a suitable technique for helping to resolve those
issues. This leads us to believe that applying STC measurements to GSE might be beneficial,
improving communication and coordination. However, after studying existing tools that use
STC measurements, we detected some gaps, both in the way they measure STC and in the
features offered by the tools for the GSE environment. That is why we have designed an Agent
Architecture for coordination and communication that aims to fill the gaps found in the
current tools and includes features adapted to GSE characteristics. This is achieved by taking
advantage of the special features that agents offer. Moreover, this proposal has been
validated in a case study performed at Indra Software Labs, a global software development
company. Results show that, by using our proposal, it is possible to improve coordination
and communication in a distributed environment.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

Modern software engineering, and more specifically Global Software Engineering (GSE), which takes place in globally dis-
persed teams, presents specific advantages and challenges to the software industry [21]. Working in a globally-distributed
team is fast becoming the norm for many software engineering organizations, as they seek to attract new customers, strive to
be nearer to their existing customers, broaden their skills base and reduce their labor costs. Realizing these benefits, how-
ever, goes hand in hand with additional challenges such as increased complexity and communication overheads [12,28].

In Global Software Engineering, coordination becomes more difficult; this is due to the problems derived from distance
(i.e. different working times, different understandings or difficulties in communicating efficiently). A key challenge for GSE
companies is to coordinate and allocate tasks, and ensure that important information is successfully communicated to all
partners [6,10,5,24]. Despite this need, there is little help available for GSE managers to assess their organization structure
and to decide which coordination and communication processes need to be strengthened. If organizations cannot assess how
well their communication and coordination strategies are working, it will be extremely difficult to pinpoint where changes
are needed. An independent measure of how people coordinate their efforts could help to solve this problem, allowing GSE
organizations to leverage the benefits of GSE and increase productivity and quality [33].
Piattini),

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.01.009&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.01.009
mailto:javier.portillo@uclm.es
mailto:aurora.vizcaino@uclm.es
mailto:mario.piattini@uclm.es
mailto:sarah.beecham@lero.ie
http://dx.doi.org/10.1016/j.ins.2014.01.009
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins


J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 231
One technique designed to measure coordination is that of Socio-Technical Congruence [8,23]. The main idea of Socio-
Technical Congruence is based on Conway’s Law [9], which says that the structure of a software product reflects the physical
layout of the development organization. Based on this law, Socio-Technical Congruence (STC) can be defined as a measure or
a technique that assesses the ‘‘fit’’ between the structure of a software system and the structure of the organization that
develops it [30] or ‘‘an intuitive way to compare required coordination effort within a software development project with
the actual ongoing coordination’’ [23].

There is now a growing effort to demonstrate empirically the benefits of gaining a good level of congruence between coor-
dination requirements and the coordination activities actually performed, where, in theory, a high level of congruence
should relate to improvements in productivity [7] and quality [22]. However, a high level of congruence can also be associ-
ated with increased risks and costs, where too many interactions can overload and overwhelm team members [4]. This
means that there is clearly a need to balance the number of interactions and time spent on actual development tasks.

On the other hand, there are tools available to help to measure STC and STC-related aspects and achieve a suitable socio-
technical balance. Tools such as Ariadne [29] or Tesseract [26] have been implemented, but the majority of STC tools have
been designed to visualize coordination relationships and coordination gaps (lack of coordination interactions where coor-
dination is needed) but they do not help the organization to maintain a good level of STC. Moreover, they use STC measure-
ments that are based on collocated development, and because of this, they are not suited to a Global Software Project.

In this paper we present an Agent Architecture that aims to manage (measure, control and maintain) the Socio-Technical
Congruence, in order to improve coordination and communication in a Global Software Project. We introduce a new ap-
proach with which to measure STC, by combining current STC measurements and agent properties, such as autonomy, reac-
tivity, pro-activity and social ability. These properties can be used to perform tasks like monitoring, reporting and measuring
Socio-Technical Congruence levels. In summary, agents could provide a much-needed systematic approach that can be incor-
porated and used to improve current STC tools. Focusing on agent architecture and STC, therefore, we aim to answer the
following research question:

RQ1: Can software agents be used to measure Socio-Technical Congruence in Global Projects?
RQ2: How can agents improve current Socio-Technical Congruence tools to make them more useful for a Global Devel-
opment Project?

To answer these questions we present how, SCT can be measured, by using the agents’ properties. We also demonstrate
how, by using the proposed Agent Architecture, agents are able to perform tasks to calculate, control and maintain STC,
improving the current tools and extending their usage to global settings. This proposal has been validated in a case study
performed at the Indra Software Labs, showing how it is possible to improve coordination and communication by using
our architecture, which combines agent technology with STC measurement.

This paper is structured as follows: In the next section, Section 2, central terms such as Congruence, Coordination,
Communication (important aspects in GSE), as well as the relationships between them, are introduced. In Section 3, the main
benefits and risks of measuring and maintaining a high level of STC are presented. Section 4 presents a review of current
approaches to measuring Socio-Technical Congruence, with a look at some of the existing tools that measure STC or
STC-related aspects. In Section 5 we present our proposal (an Agent Architecture) for managing STC and improving the exist-
ing tools in a global setting. We also explain, in Section 5, why agents might be an appropriate technology with which to
measure STC in GSE. Section 6 describes the results obtained in the case study performed. In Section 7, the main limitations
found and assumptions made in our proposal are discussed. Finally, in Section 8, we outline the conclusions obtained and
lines for future research.
2. Congruence, coordination and communication

To clarify why measuring Socio-Technical Congruence is related to the improvement of coordination and communication,
in this section we define the terms congruence, coordination and communication and how they inter-relate.

Congruence has several definitions in literature, but they all refer to ‘‘the match between a particular organization design
and the organization’s ability to carry out a task’’ [8]. We have taken the definition given in [23], where it is defined as ‘‘an
intuitive way to compare required coordination effort within a software development project with the actual ongoing coor-
dination’’ or ‘‘the fit between an organization’s coordination requirements and an organization‘s social interactions’’.

From this definition, we can already draw out the main relationship between coordination and Socio-Technical Congru-
ence (STC). Basically, what STC measures is the alignment between coordination needs (extracted from technical dependen-
cies) and the real coordination performed (drawn from socio-technical aspects). This means that to measure STC it is
necessary, first of all, to obtain the coordination needs and then check the coordination that the team members are actually
performing.

Coordination needs (represented in Fig. 1) can be obtained in different ways, but they are usually found by combining
technical dependencies between Technical Entities and dependencies between Technical Entities and stakeholders of the
project.



Fig. 1. Coordination need.

232 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
A Technical Entity (TE) is ‘‘an entity in a project that can be worked on by a person’’ [22]. Depending on the context where
STC is calculated, we can consider different kinds of Technical Entities. Examples of TE are Tasks, Requirements, Bugs, Source
Code Files, Modification Requests, Tests, etc.

Thus, by extracting the dependencies between these TEs (for instance, requirements that depend on each other) and asso-
ciating these dependencies with those between stakeholders and TEs (for instance, person P is assigned to requirement R), it
is possible to obtain the Coordination Needs that indicate which particular individuals should be coordinated with which
other specific people.

Although in Fig. 1 only one coordination need is represented, it is necessary to obtain all the coordination needs between
all the stakeholders involved. The set of stakeholders to be taken into account will be defined by the focus of the study; that
is, if the STC is measured for the whole project (in this case, a GSE Project) the set of stakeholders will be all the stakeholders
participating in the project.

If, on the other hand, the STC is measured for just the coding phase of the GSE Project, the set of stakeholders will contain
those stakeholders involved in that phase. In order to measure STC, these Coordination Needs should be compared to the real
coordination that stakeholders are actually performing.

To obtain real coordination, usually called Actual Coordination [8,7], social interactions are used. The assumption made
is that those individuals having social interaction might be coordinating themselves. As explained in [22], the actual coor-
dination ‘‘does not need to represent coordination at all, but merely a relationship of interest between two people in an orga-
nization’’. Here is where communication is related to STC, because one way of obtaining social interaction is by obtaining
communication interaction.

Moreover, as stated in [16,17], informal communication is important for coordination. Specifically, a dense communica-
tion network is associated in [17] with fewer coordination problems in distributed teams.

We can thus see that one way, but not the only one, of obtaining Actual Coordination is by checking communication inter-
actions. Here is other important assumption, consisting in supposing that all communication interactions are related to work
aspects. In practice, not all communication interactions are actually work-related interactions, but the percentage of work-
related interactions is usually enough to accept this assumption.

In a nutshell, the relationship among Socio-Technical Congruence (STC), Coordination and Communication can be repre-
sented as shown in Fig. 2, where STC is measured by comparing Coordination Needs and Actual Coordination. Coordination
Needs are obtained by using Technical dependencies between technical entities. Moreover, Actual Coordination is obtained
by using social interactions, where communication interactions are a subset of these.

Given the relationship between STC, Coordination and Communication, measuring STC might be an indicator of the level
of coordination, as well as of communication. This level is usually translated to the number of ‘‘gaps’’ (the lack of interactions
between two people that should be coordinating); that is, wherever there are no gaps the level of congruence is supposedly
the highest.

On the other hand, when there are gaps, it could mean that there are mismatches between the needed coordination and
the actual coordination; it might therefore be necessary to close them if coordination breakdowns are to be avoided.

Now that the main concepts of this work, along with the relationships between them have been explained, in the next
section these relationships are used to explain why measuring STC might be important or beneficial and what particular
practical uses of measuring STC exist at the present time. We also include some of the disadvantages of measuring STC.
3. Measuring Socio-Technical Congruence: Pros and cons

Coordination between team members is needed in every software project. In some cases, however, such as in distributed
or global software development, coordination becomes more difficult, due to the problems derived from distance (i.e. differ-
ent working times, different understandings or difficulties in communicating efficiently). All these factors make it necessary



Fig. 2. Relationships between STC, coordination and communication.

J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 233
to apply techniques that help to assure a good level of coordination in the effort to avoid coordination breakdowns that
might have a negative influence on the success of the project.

Socio-Technical Congruence (STC) is directly related to coordination, as stated in Section 2. To be specific, it is directly
related to coordination needs and how these coordination needs are actually performed. Thus, one of the main benefits that
can be obtained by measuring STC is to assure that coordination needs are being fulfilled. In other words, the higher the level
of congruence, the higher the percentage of fulfilled needs, which in the end can be translated into the following assertion:
measuring STC can result in a better level of coordination.

As mentioned in Section 2, STC is also related to communication. In this sense, measuring STC is also a way of monitoring
and improving communication between distributed teams. To measure STC it is usually necessary to look at how people are
communicating; this implies that it might be a way of detecting problems in this area, such as the lack of communication, or
communication overload.

There are empirical studies that certify specific benefits (in specific contexts) of measuring STC. In [8], the analysis of con-
gruence shows that it helps to reduce the amount of time required to perform tasks such as modification requests, and that
the most productive workers reach higher levels of congruence than the less productive.

Moreover, measuring STC is an effective way of detecting ‘‘gaps’’, in order to close these and avoid their negative effects
(for instance, the number of code changes increases when communication gaps exist [13]).

There are several practical applications of measuring STC; for instance, a manager can use it to monitor the alignment of
his teams’ coordination with technical dependencies [23]. It can also be used to provide a ranking of missing coordination,
suggesting which gaps are the most important to fill [23]. In [8], there is a description of a set of implications for collabora-
tive tool design.

For instance, tools might assess the congruence between coordination needs and communication in order to monitor,
control and improve the flows of communication. Moreover, tools could provide real-time information of the set of workers
that a person may need to communicate with.

We can summarize all this by saying that, due to the need for efficient coordination (especially in distributed teams), So-
cio-Technical Congruence (STC) is a useful technique with which to study coordination and thereby assess to what extent
coordination needs are fulfilled.

Moreover, a high level of STC has been reported in many studies [7,13, 22] or [15], with an improvement in the outcome
of development activities that require a large amount of coordination. Measuring STC can, nevertheless, introduce additional
costs and risks that should be considered. For instance, if we try to eliminate gaps by augmenting coordination and commu-
nication this might increase an overload of information in team members, and individual productivity could decrease [4].

Bearing in mind all the benefits explained above, in terms of what a software development organization might obtain
through high Socio-Technical Congruence, it is vital to deploy mechanisms with which to measure the level of congruence
in an organization. Taking that into account, the approaches found for calculating or measuring STC are presented in the
following section, together with some of the tools available.
4. Related work: Measurements and tools

In this section, we introduce some of the existing Socio-Technical measurements and tools. In relation to our proposal, we
will glean possible tool improvements from this section, to study whether any of the measurements presented can be used
by our Agent Architecture in a GSE Project.



234 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
4.1. Socio-Technical Congruence measurements

In this section we present four approaches for measuring Socio-Technical Congruence, as sourced from literature. Accord-
ing to Brooks [4] measuring congruence implies taking into account ‘properties’ of congruence [25]:

Congruence represents a state at a particular moment in time; that is, an organization may be congruent at a particular
moment in time and this does not assure that the organization will be congruent at another point in time. Congruence is
dynamic, because dependencies, coordination needs or social structures, among other things, may change over time.
Congruence is multi-dimensional; measurements should specify which dimension or dimensions they are dealing with.

Dimensions are related to the ways of coordinating the work, such as comments left in tools or direct communication
with dependent stakeholders. Finally, congruence is also a multi-level measurement; this means that it can be measured,
for instance, from individuals or teams, right through to organizations.

To measure congruence it is also necessary to gather information such as team structures, communication interactions,
process and work practice information, current coordination actions taken through tools, tacit knowledge, task assignments
and location of people, among other things [25]. Depending on the dimensions and/or levels, chosen, the information needed
may vary.

To obtain the desired information, existing software tools such as forums, instant messaging tools, email tools or software
repositories can be used. In such cases information may be obtained automatically, but sometimes it may be necessary to use
surveys or interviews as well.

There are ways to calculate or measure the Socio-Technical Congruence (see Table 1). In the case of Cataldo et al.’s mea-
surement, presented in [8,7], Coordination Needs are found by using Task Dependencies, and Actual Coordination is obtained
in four ways: (1) Structural Congruence, when two workers belong to the same formal team, (2) Geographical Congruence,
when two people are working in the same physical place, (3) Modification Request Communication Congruence, when two
workers have made comments on the same modification request report, and finally and (4) IRC communication congruence,
constructed by examining the IRC logs manually; this exists when two workers make reference to the same modification
request.

Kwan et al. [23,22] present a congruence measurement that takes limitations found in Cataldo et al’s first proposal into
account; that is, every dependency is considered equally important, and any coordination action is sufficient to fulfill a coor-
dination need.

Kwan et al. build on Cataldo et al’s solution by adding a weighted congruence measurement [23]. Weights are given to
dependencies between tasks, as well as to between tasks and people. Dependencies between tasks are established by using
‘‘the ratio of dependencies a task has with another over the number of total dependencies that task has on others’’ [23].

Dependencies between tasks and people are weighted by using the number of hours that a worker is supposed to spend
on a task. In this case, to obtain Actual Coordination a communication network can be used, weighted by the amount of
ongoing communication.

Moreover, several distance measurements may also be employed, such as physical distance, time difference or the num-
ber of organizational units that separate two individuals. This weighted congruence measurement, presented by Kwan et al.,
is supposed to have some benefits with respect to gaps. The approach is able to detect where the gaps are and assess the
importance of the gaps, in order to identify the most important ones to close.

In [13], Ehrlich et al. present a different approach to measuring congruence, which focused on gaps in communication in
their effort to study coordination in distributed teams. Moreover, Valetto et al. in [32] explain how the information needed to
use this congruence measurement can be obtained by using software repositories.

To calculate congruence, they use a social network, where they combine information about communication interactions,
mapped as undirected graphs, and relationships between software artifacts, mapped as directed graphs, as well as work rela-
tionships; these too are represented as directed graphs, by relating people and software artifacts. They also consider the pos-
sibility of including weights in the arcs, by using the number of changes to the same artifact made by a worker, or the
number of dependencies between source files.

In addition, they propose the use of other attributes apart from the weight, such as confidence among the workers, or the
size of contributions. Finally, they calculate congruence by measuring the proportion of software artifact relationships that
are mirrored by the people interaction network and to do so they developed an algorithm, which is explained in [32].

Another approach that also uses social networks is presented by Gokpinar et al. in [15]. This network, called ‘Product
Architecture Network’, is created by considering the sub-systems as nodes, and links as dependencies between sub-systems.
Gokpinar et al. also use the dependencies between engineers and subsystems to find out where the engineers are performing
communication, so as to obtain a network called Organizational Coordination Network that represents the Actual Coordina-
tion matrices presented previously. Finally, to obtain congruence (called ‘‘Coordination Deficit’’ in [15]), both networks are
compared.

In Table 1 we have included information about the authors of each measurement and the references where the measure-
ment is explained (first column). We have also included the project phase where the measurement has been applied and
where the associated data has been extracted, along with the approach used to formalize the measurement, in this case
matrices or social networks, and whether the congruence measurement take into account weights, also noting which
weights have been used in each case. Moreover, dimensions considered in each proposal are included; the last column
indicates whether the congruence measurement has been used in any empirical study to check advantages, benefits or



Table 1
Key features of congruence measurement approaches presented in this section.

Congruence
measurement

Project
phase

Approach Weighted Weights Dimensions considered Empirically
tested

Cataldo et al.
[8,7]

Coding Matrices No [8] Number of source-code
files dependencies

Team Structures, Geographical Location,
Modification Request Comments, IRC
communication

Yes [8,7]

Yes [7]
Kwan et al.

[23,22]
Coding Matrices Yes – Dependencies a task

has with another
– Hours that a worker is

supposed to spend in a
task

– Expertise a person has
about a task

Communication interactions, Physical
Distance, Temporal Distance

Yes [22]

Valetto et al. [32]
and Ehrlich
et al. [13]

Coding Social
networks

Yes – Number of changes to
the same artifact made
by a worker

– Number of dependen-
cies between source
files

Communication interactions, Software
Repository information

Yes [13]

Gokpinar et al.
[15]

Architecture
design

Social
networks

Yes Number of distribution lists
where the engineer is
included

Communication through distribution lists Yes [15]

J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 235
improvements that can be obtained by using it in comparison to, for instance, not using any congruence measurement, or
using another different existing congruence measurement.

For our architecture, we believe that the most appropriate measurement is that of Kwan et al., for several reasons:

� Its features can be adapted to the global context where the agents of our architecture will operate. For instance, this
approach takes into account the geographical and temporal distance, two important factors in a global environment.
In fact, as we will see later, we have also included the socio-cultural factor as a third weight.

� Kwan’s approach has been tested by using the tasks as the main technical entity; this fits well with our context, since
we need to use a measure that is valid for all GSE processes, and tasks can be considered in all software life processes.
For instance, Valetto et al. [32] and Ehrlich et al. [13] have tested their proposal, looking at aspects very close to the
coding phase, such as the number of dependencies between source files, or Software Repository information.

� It should also be said that to achieve our goals we do not need to represent the dependency networks, which means
that an approach that uses social networks is not indispensable for us. We believe that considering an approach based
on a social network would offer more analysis possibilities, but at the same time it would make data management
more difficult, without improving our approach.

In short, since we are not creating a new STC measurement we have chosen the one whose weights and dimensions best
fit our requirements.

These approaches present a solution for measuring STC; however, there are also some practical implementations (tools),
based on the idea of Socio-Cultural Congruence, that should be taken into account before proposing a new approach.

4.2. Tools supporting Socio-Technical Congruence

In order to provide knowledge about the existing implementations related to Socio-Technical Congruence measurement,
in this section we present a set of tools or prototypes, also indicating which points might be improved if new tools are to be
developed. These improvement points will be taken into account when presenting our proposal. To obtain the set of tools, we
have performed a non-systematic review in STC literature, based mainly on the information taken from papers presented in
the different editions of ICSE workshops on Socio-Technical Congruence. The set of tools discovered is the following:

� Ariadne: [29,2]: This is an Eclipse plugin that analyzes Java files to identify dependencies and authorship informa-
tion: it does so by using a configuration management repository. With this information, the tool is able to identify
software dependencies between software developers and visualize these dependencies finally, to create a bridge
between technical and social dependencies. The goal of generating these visualizations is to minimize coordination
problems.

� TraVis: [18]: This tool has the same goal as Ariadne, but it makes use of dependencies between different artifacts and
their users, instead of using source code authorship only. With this information TraVis creates a semantic network,
called ‘‘traceability network’’, with task-related entities, artifacts, and users. TraVis thus uses this network to display
the dependency network of specific artifacts, developers or activities, in the quest to increase awareness within a GSD
project.



236 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
� WorldView: [2]: This is a software development tool designed to provide managers, team leaders and developers
with a central repository that can visualize the structure of distributed teams, the availability of its members and
their location. The tool draws out, from a number of sources, the social dependencies between teams and represents
each dependency that is extracted as a color-coded line between two dependent teams, or between two team
members.

� Tesseract: [26]: Tesseract is a socio-technical dependency browser that makes it possible to show social and tech-
nical relationships between different project entities such as developers, code or bugs. It also visualizes the match
or mismatch of socio-technical relationships and allows the interactive exploration of these relationships over time.
In other words, this tool analyzes different project entities to determine the socio-technical relationships. These rela-
tionships are displayed via four panels, enabling easy exploration of the data set. This tool makes use of the Cataldo
approach to calculate Socio-Technical Congruence.

� ‘‘Fonseca Tool’’: [27]: This tool has been designed to identify dependencies between pieces of code and their authors
automatically, using Ariadne [29]. With this information, the tool creates a social network of developers that estab-
lishes the dependencies between developers. By using these two types of dependencies, the tool can identify situa-
tions where there is a mismatch between the dependency and communication networks.

� CodeSaw: [14]: This is a social visualization tool for distributed software development. CodeSaw visualizes a soft-
ware community by using code repositories and project communication. This tool introduces the feature of Spatial
Messages, which consist in allowing users to leave comments on the visualization itself.

Our study of the tools presented has led us to obtain some interesting conclusions that could help to improve the current
tools:

� The first conclusion is that there are some tools, such as Ariadne, that take into account only one single data source;
they do not compare the technical dependencies with social interactions (for instance, communication interactions);
these tools therefore make a less thorough analysis than those that use both.

� The second conclusion is that almost all the tools have the goal of visualizing dependencies and/or of indicating lack
of coordination. This means that no new visualizations tools are needed. The only problem is that they just visualize
the situation; they do not apply actions automatically in order to improve a negative situation.

� Thirdly, those tools calculating STC, such as Tesseract, use an approach (Cataldo et al’s) that was not designed to be
used in a global environment; this being so, they incorporate all the disadvantages of this approach (as presented in
Section 4.1) such as the fact that the measurement does not include weights and it is not possible to establish, among
other things, a gap ranking.

� The fourth conclusion is that some of these tools highlight gaps, but they do not analyze these gaps in time, nor do
they relate these gaps to the level of coordination by using STC values, for instance.

� Fifthly, we conclude that there are tools, such as the ‘‘Fonseca Tool’’ that take into account communication interac-
tions only (in this case by email). This can be considered an incomplete way to measure STC, because email interac-
tions are not the only way of communication and/or coordination. For instance, in a Global Environment, indirect
communication through development tools (for instance, comments attached to issues in Issue Management Tools)
is also performed, and these interactions should also be included when measuring STC. This is stated in [11], which
asserts that assuming that coordination is performed by direct communication only is a mistake.

Considering these points, together with the features of the STC measurements presented, we can give a set of reasons to
outline why our architecture, based on agent technology, may improve the way STC is calculated and used by the tools
studied:

� The first reason is related to the environment where STC is being calculated and used, i.e., Global Software Engineer-
ing. In this sense, agent technology has been specifically designed to be used in distributed environments where
information flow and coordination should be controlled.

In our context, the distributed environment is a GSE project; agents collaborate to calculate STC, with the global goal
of measuring coordination and of maintaining a good level of this coordination. First of all, then, we can say that
agent technology fits perfectly with the real environment where STC will be calculated and used.
� The second reason is related to the general limitation of the existing tools to work proactively. That is to say, the
existing tools do offer support to highlight automatically the dependencies that exist between team members and
to indicate where there are possible coordination and communication gaps. However, they do not perform actions
automatically to close the gaps found, for instance. In our case, agent technology has been designed specifically to
work as proactive software that does not wait for user intervention to perform some kind of actions. For instance,
by using agents, the gaps detected can be analyzed in a collaborative way, to decide which action would be the best
one to take in order to close the gaps (without human intervention). In our case, as explained later, agents will
collaborate to offer each team member possible solutions for closing the gaps detected.



J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 237
� The third reason is closely related to the second one, since agents have also been designed to work as personal assis-
tants (for instance recommenders). The possible solutions given by the agents will thus also be adapted to user pref-
erences. That means that information given by the agents will not be the same when the gap has no importance as
when the gap is really important. Similarly, the solutions offered will vary depending on user preferences. For
instance, to close a coordination gap the agent may recommend to two team members how and when communica-
tion between them should take place, based on each user’s preferences.

Finally, we can say that the use of agents allows us to include all the features that are needed to calculate STC in a way
that fits perfectly with the GSE context, permitting us to include some improvements with respect to the existing tools.

Our proposal puts forward its goal of improving coordination and communication by measuring coordination through the
use of STC and by offering distributed team members a set of features that are not available in current implementation; this
is all possible thanks to the use of agent technology.

In the next section, we present our proposal, giving more details about the way agent features are used to apply the
improvements that have been detected as needed.
5. Proposal: An agent architecture to manage Socio-Technical Congruence

In the first part of this section, that is, in Section 5.1, we are going to present Agent Technology as a technology that can be
used to manage Socio-Technical Congruence. In addition, we will describe (in Section 5.2) an Agent Architecture, explaining
how this is able to apply some improvements over existing tools. By doing all this we will respond to the research questions
RQ1 and RQ2.
5.1. Using agents to measure STC

In general, agents are software programs with special properties, and although different definitions of intelligent agents
can be found in literature, one way of distinguishing agents from other types of software applications and of characterizing
them is to describe their main properties [34]:

� Autonomy: agents operate without the direct intervention of humans or others, and have some kind of control over
their actions and internal states.

� Social ability: agents interact with other agents (and possibly humans) via some kind of agent communication
language.

� Reactivity: agents perceive their environment and respond in a timely fashion.
� Pro-activeness: in the sense that the agents can take the initiative and achieve their own goals.

By using these properties, agents are able to perform tasks that might be useful when managing SCT:

� Software agent technology can monitor and coordinate events and meetings and disseminate information [3] or build
and maintain organizational memories [1]. Another important issue is that agents can learn from their own experi-
ence. Consequently, agent systems are expected to become more efficient with time, since the agents learn from their
previous mistakes and successes [35]. In doing all this, agents can discover the most appropriate actions to eliminate
gaps, for instance.

� Most agents today employ some type of artificial intelligence technique to assist the users with their computer-
related tasks, such as reading e-mails, maintaining a calendar, and filtering information[20]. This might be very use-
ful for registering users’ interactions and for obtaining actual coordination.

� Agents can exhibit flexible behavior, providing knowledge, both ‘‘reactively’’, on user request, and ‘‘pro-actively’’,
anticipating the user’s knowledge needs. They can also serve as personal assistants, maintaining the user’s profile
and preferences. Agents can thereby perform actions to improve congruence, coordination and communication
and adapt these actions to the users’ preferences and group necessities.

To summarize, the properties and uses of agent technology in the area of information management have encouraged us to
consider agents as a suitable technology to manage Socio-Technical Congruence. This is because agents might control con-
gruence at different levels by taking into account user, group and context characteristics, in order to apply actions that help
to maintain congruence and hence project coordination and communication. Thus, at user level, agents can play the role of
user assistants by taking the user’s coordination needs into account, suggesting possible solutions to users when potential
coordination or communication problems appear. These solutions might be adapted to the user’s needs by considering, for
instance, user profiles or user preferences. At group level, agents can cooperate to maintain congruence of the group or ex-
tract valuable information such as who the most active or the most-consulted users are.

Moreover, it is our belief that because agents are able to do all the tasks on their own, without needing too much user
intervention, they thus avoid overloading users with more tasks. Another aspect that makes agent technology suitable for



238 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
this work is the scalability of agent systems. The number of agents in a multi-agent system can vary, depending on the needs.
For instance, if an agent is needed to register interactions, this agent might become a bottleneck, because all interactions are
registered by the same agent and the number of interactions could increase considerably. It is possible, however, to increase
in real time the number of agents in charge of registering interactions, thus avoiding bottlenecks. The agent system can
hence be adapted to a setting such as a Global Environment where we cannot predict initially the number of interactions.

Taking all these reasons into account, we can say that agents could be used to measure STC because they are able to
manage it, and apply actions that avoid risks when measuring STC; existing implementations are thus improved. In the next
section we present the Agent Architecture that we propose.

5.2. An agent architecture to manage Socio-Technical Congruence

Based on what we have explained in Section 5.1, we argue that agentś properties can be used in the context of managing
STC. To that end we have designed an agent architecture, with the main goal of managing STC in order to monitor and
improve coordination and communication in a Global Software Project.

5.2.1. Architecture goals
To reach the main goal, we have defined a set of sub-goals that agents will reach by following a non-intrusive approach.

That is, agents will perform their tasks, trying not to disturb or overload users with too much information, while adapting the
information to each user’s preferences. The sub-goals defined in order to improve coordination and communication between
team members are the following:

� Calculation, Control and Maintenance of Socio-Technical Congruence: As we have explained before, a high level of
STC is associated with better coordination and communication between team members. Agents will thus be in charge
of calculating, controlling and maintaining STC in order to improve coordination and communication. To calculate
congruence, the agent will use the approach given by Kwan et al. [22] because this is the one that is best adapted
to the global context; these authors use temporal distance, geographical distance and communication interactions
to calculate congruence. The next goal is directly related to this first one, because it derives from the measuring
and control of STC.

� Detection, analysis and elimination of gaps: Taking into account that agents are calculating and monitoring (con-
trolling) the level of STC, they are also able to detect which team members are not interacting with those they should
be, based on their coordination needs; in other words, agents are able to detect gaps. Given the negative effects for
coordination wherever gaps exist, agents will detect important gaps, seeking to close them and maintain a good level
of STC and coordination. Moreover, they will check which actions have been the best ones in closing these gaps.

To achieve these goals, we have designed an agent architecture composed of a set of modules that will manage the agents’
behavior. Before explaining each architecture module, it is important to know how agents obtain and share information with
other agents and/or other software entities, if we are to understand the data/information flow in the architecture.

Agents are usually represented as ‘‘Input-Process-Output’’ entities, since they receive information from other agents or
systems; they then process that information, and finally they generate an output that is usually translated into an action.
The way that agents receive the input is by using messages. In our case, these messages will come from other agents or from
the user (by using a tool), and will contain data/information that agents should process in order to generate an output (an
action). If the user wants to update personal data, for instance, he/she will use a tool, which will send this information to the
agent using a message.

5.2.2. Scenario
This agent architecture has been designed for use in a global software environment, i.e., in a Global Software Project,

where different teams may exist, and where team members can be distributed geographically in different countries. A spe-
cific example of a scenario where agents can be used is the one represented in Fig. 3.

In Fig. 3 there are three teams in charge of implementing a software system. This system has been divided into three
parts; each team should implement each part. These parts are dependent; coordination is needed between the teams and
their members.

Each team is composed of team members; members from a given team should coordinate and communicate with those
members from the other teams that are working on dependent parts of the system.

In this kind of scenario, each user would have a personal agent, who would be in charge of registering user preferences,
user coordination needs and user interactions (to obtain actual coordination), calculate congruence, etc. Using this informa-
tion, each agent would control the coordination gaps of each user and would select appropriate actions to eliminate any gaps.
The scenario presented in Fig. 3 could thus be represented as follows (see Fig. 4).

In this case, Fig. 4, each ‘‘smiley’’ represents an agent (a team member); the linking lines represent the information
exchange between agents. This exchange of information between agents is necessary to maintain congruence, as well as
to improve coordination and communication.



Fig. 3. Scenario.

J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 239
To understand how agents are able to achieve the specified goals, in the following sections we set out the architecture
structure in detail and describe how the architecture modules interact. We also indicate the data flow between modules
for some of the main features.

5.2.3. Architecture structure
Bearing in mind the model used by the agents to obtain and share information, the architecture modules (shown in Fig. 5)

can be presented:

� Interpreter: This is a commonly-used module in agent architectures, in charge of checking the type of input (mes-
sage) that agents receive. Depending on the type of message, the Interpreter will send the message (or the informa-
tion included on it) to one of the connected architecture modules in order to process the input.

� Profile Manager: As we have said before, one of the key aspects of the architecture is to follow a non-intrusive
approach and adapt the information to each user’s preferences. This being the case, we have defined a module called
Profile Manager that will be responsible for checking the user’s preferences so as to adapt the way agents interact
with users. This profile manager will thus manage information about, for example, when the user prefers to be con-
tacted, what his/her working hours are, or what the user’s role is in the project. This information will be managed to
carry out actions such as to adapt agent’s notifications to the user’s preferences, for instance.

� STC Manager: This module is divided into three sub-modules and its main goal is to obtain enough information to
calculate STC. The sub-modules are the following:

– Interaction Manager: To measure Socio-Technical Congruence, the actual coordination that team members are
really performing needs to be obtained; this is extracted from team members’ interactions. This module is thus in
charge of monitoring, and registers the interactions of each user. This module should be adapted to the specific
use of the architecture, since it might draw interactions from different sources such as the email database, discussion
forums, and chat messages.

– Coordination Manager: Another of the elements needed to measure Socio-Technical Congruence is the coordination
needs. This module will capture and monitor those over time. These needs may be extracted automatically by con-
necting this architecture module to a Project Management tool. For example, it could be connected to Jira1 by using
the Jira connectivity options (plugins or web services) to extract coordination needs from the relationships between
tasks and workers.

– STC Calculator: This module processes the information obtained by the agent, in order to calculate the STC and con-
siders this to be a general indicator of the user’s coordination and communication level. In this case, the agents cal-
culate the STC by using a weighted approach based on that presented by Kwan et al. [22]. Rather than proposing a
new STC measurement, we use a modification of Kwan’s approach, so as to adapt the existing STC measurement to
the GSE context. Kwan’s approach has been adapted to our highly-distributed environment through the inclusion of a
set of factors that influence the way in which globally-distributed team members perform coordination and commu-
nication activities. These factors have been included as weights that determine the STC level of each user.
1 www.atlassian.com/JIRA.

http://www.atlassian.com/JIRA


240 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
In the original approach, the dependencies which one task has with another, the time that a worker is supposed to spend
on a task and the expertise that a person has as regards a task were considered as weights. However, in our case, we con-
sidered the following factors as weights:

� Socio-Cultural Distance (SCD): This factor is calculated by using the countries from which the team members orig-
inate and by consulting a table, presented in [19], in which 50 countries are rated according to a set of socio-cultural
factors that influence the way in which team members work in each country.

This factor influences the STC level as follows: Interactions performed by team members with a high SCD are consid-
ered less important than interactions performed by team members with a low SCD. By using this factor in this man-
ner, STC levels will be higher if the SCD is low than if the SCD is high.
In summary, our agents consider that team members with a high SCD need more interactions to maintain a good
level of coordination (a good level of STC) than team members with a low SCD. By way of example, if two team mem-
bers belonging to the same city perform 4 interactions in a week, this will be considered as a better coordination level
(higher STC level) than in a case in which the same numbers of interactions are performed by two team members
belonging to different countries, because in the second case more interactions are already considered necessary.

� Temporal Distance (TD): This factor is used in a more analogous manner than SCD, and is measured as the difference
in time between locations. In this case, it is considered that team members who are separated by a greater time dif-
ference need more interactions to maintain a good level of coordination (a good level of STC) since they do not work
at the same time-zones. Our agents will therefore consider any coordination interactions performed by team mem-
bers separated by a greater number of hours to be of less importance and this way, to obtain a better STC level, these
team members will need more interactions and thus we will be fostering interactions among separated team
members.

� Geographical Distance (GD): This last factor is measured by the amount of kilometers between locations, and is used
in a similar way to the previous factors. Interactions performed by team members separated by a great geographical
distance will therefore be considered less important than interactions performed by co-located team members, since
our agents will consider that co-located team members need fewer interactions to maintain coordination, and also
that these interactions are easy to perform.

Although these three factors are used in a similar way, it is necessary to use all of them, since a high SCD does not imply a
high TD or a high GD. For instance, Spain and Argentina are separated by a high TD and GD but the SCD is not very high be-
cause, among other things, the language is the same. The best case, supposedly, in terms of STC, will thus be when team
members belong to neighboring countries, and the worst will be when team members belong to highly separated cities
(countries) with very different cultures.

The last factor that we take into account is Task Priority, in order to consider technical aspects of the global project. We
believe that it is better to perform a higher number of interactions when task priority is high. This is translated to a higher
level of STC, and our agents will consider that coordination interactions performed to finish high priority tasks are of less
importance, thus ensuring a higher number of interactions to obtain a good coordination level.
Fig. 4. User agent distribution.



Fig. 5. Agent architecture.

J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 241
Another modification that has been made to Kwan’s approach is related to the fact that approach was defined for project
developers. In our case, the scope is any project stakeholder working on project tasks or issues. The scope of the original ap-
proach has therefore been extended.

Apart from the aforementioned changes made to Kwan’s original approach, our architecture also considers entities when
calculating STC. These are the following:

� Technical Entity: The technical entity that will be used by the agents will be that of issues. In this work, issues rep-
resent the technical entity in which tasks are defined and may therefore include tasks such as the performance of a
new development, or the resolution of any simple support task.

� Technical Dependency: Of all dependencies between issues, this architecture considers two main types of depen-
dencies by default: a parent–child dependency and a general ‘‘depends-on’’ dependency, signifying that two issues
are dependent, but that the reason for the dependency is not specified. The architecture database can be used, nev-
ertheless, to increase the number of dependency types in the effort to support specific issue relationships.

� Coordination Need (CN): As stated previously, when explaining the Coordination Needs Module, agents will con-
sider that there is a coordination need between two project stakeholders when there is a dependency between
two issues, when one issue is assigned to one of the project stakeholders and the other is assigned to the other stake-
holder. The agent retrieves all of the user’s coordination needs to generate a coordination needs matrix. The coordi-
nation needs matrix is weighted by using all of the aforementioned weights. A coordination need is thus stronger if
team members are highly distributed. Bearing that in mind and in order to calculate Coordination Needs, we need to
calculate: (1) Assignment Matrix- representing which tasks are assigned to whom- and (2) Task Relationships
Matrix- representing dependencies between tasks, we apply the weights as follows:

� Assignment Matrix (A) values are weighted by using task priority. This way we give more importance to assignment
of tasks that should be finished with greater priority.

� Task Relationships Matrix (D) values consider only two values (0,1), representing that there is no dependency
between two tasks.

� We construct the Coordination Needs matrix by using the following formula:
CN ¼ A� D� ðAÞt



242 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
Finally, we use as final weights the normalized sum of the distance factors to adjust the coordination needs values that have
been obtained.

The final effect that we obtain by calculating the coordination needs in this way is that there will be a greater need for
coordination when task priorities and distance between users are higher.

� Actual Coordination (AC): The Actual Coordination matrix is calculated by using the same approach as Kwan’s. The
agent generates a matrix of user interactions that represents the Actual Coordination matrix. This matrix is weighted
by considering the amount of ongoing communication, which is normalized by using the largest value of communi-
cation between two team members (used in Kwan’s approach), in addition to the weights mentioned previously (our
adaptation).

� Congruence calculation: Congruence is calculated by comparing the Actual coordination matrix and the Coordina-
tion Needs matrix. If an edge exists in the Actual Coordination matrix and it also exists in the Coordination Needs
matrix, the agent considers that there is congruence. Finally, in order to extract a general indicator of the level of
coordination and communication, the agent calculates the percentage of coordination needs that the user is fulfilling,
by using the following formula:
DiffðCN;ACÞ ¼ cardfdiffijjCnij > 0 & Acij > bf 0g

LC ¼ DiffðCN;ACÞ=jCNj
With this approach we obtain as a result that people related by high priority tasks, who are at a great distance from each
other, will need more interactions to achieve their coordination needs, which means a good level of coordination. This is
done because we consider that people working in geographically-distant places, talking different languages, etc. will need
more interactions to keep coordinated.

� Gap Manager: One of the main goals of measuring Socio-Technical Congruence is to detect and close important coor-
dination gaps. Given that actual coordination is related mainly to communication interactions, this module will be in
charge of detecting both coordination and communication gaps. Apart from that, this module will eliminate the gaps
detected by also taking into account the non-intrusive approach. To achieve this goal, this module has been divided
into the following sub-modules:

� Gap Detector: This module will check the fit between coordination needs and actual coordination, to obtain possible
gaps. This information is taken from the Knowledge Base once the STC Manager has stored this information.

� Gap Analyzer: This module will analyze the gaps detected in order to find out which are most important and need to
be closed quickly; that is, it will make an analysis of the relative importance of gaps.

The importance of gaps is calculated by using a variation of Kwan’s approach [22], weighting the gaps with a normalized
value of the sum of SCD, TD, and GD. To be specific, this module will adjust the importance of the gaps calculated by mul-
tiplying the values obtained by one, plus a normalized sum of the four explained weight values between each pair of users.
Our agents thus place more importance on those gaps in which team members have most difficulties as regards communi-
cation and coordination.

In the example shown in Fig. 6, there are two gaps which are rated with 0.2 (Gap A) and 0.12 (Gap B). If we imagine that
the weights values calculated (normalized sum of SCD, TD and GD) are 0.05 (representing people with a low distance value)
and 0.8 (representing a high distance value) respectively, then the agent finally obtains 0.21 for Gap A (A’ in Fig. 6) and 0.216
for Gap B (B’ in Fig. 6. This means that, although Gap A was initially more important, Gap B is eventually more important,
owing to a higher socio-cultural distance and/or temporal distance and/or geographical distance.

� Gap Closer: This last module will select the right actions that the agent will perform to close the gaps. To select the
right actions (the right plan) this module will take into account preferences of its user and preferences of the other
users implicated. For instance, if the agent wants to close a gap by connecting two users via email communication, it
will consider when the users prefer to be contacted, as well as the working hours of each user. To do this it will use
the information stored in the User Profile Data Base by the Profile Manager.

� Information Disseminator: This module will access the information stored by the agent and will share it when is
needed by another agent. The information that agents will share will be stored in five databases that make up the
Knowledge Base of each Agent.

– User Profile: This Knowledge Base (KB) will contain the information related to user preferences or user profile. It will
thus contain, for example, the role, native language, work-place or contact preferences, among other information.

– Actual Coordination: This KB will contain the interactions that each user is actually performing, including when,
how and with whom each interaction has been performed.

– Coordination Needs: This KB will contain the coordination needs of each user. These coordination needs will be
associated with a period of time, in order to log the changes over time.



Fig. 6. STC and gap calculation.

J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 243
– Congruence and Gaps: In this case, this KB is used to store more complex information. Its goal is to store information
related to calculated values of STC and gaps. It will therefore contain the gaps detected, as well as the importance of
the gaps, along with the effectiveness of the plans chosen to close the gaps. Agents can thus learn the best plans for
each type of gap, ensuring that they can at the very least apply the most effective plans first of all. Moreover, agents
will be also able to check whether the plans applied are helping to obtain better levels of congruence.

– Plan Generator: Taking into account that in the agent context a plan is a set of one or more actions, this module con-
tains all the possible actions that the agent can perform; depending on the needs, this module will select a set of
actions to generate a plan. The other modules will then request the appropriate plan that helps to achieve the agent’s
goals. For instance, if the Interaction Manager Module wants to check interactions in the email database, this request
is sent to the Plan Generator Module and this latter will select the set of actions needed to perform that task. Basi-
cally, it works as a predefined plans store, and it is a module that is typically used in agent architectures.

– Scheduler: This module is also one that is typically used in agent architectures. It is in charge of managing the pri-
ority of the actions that agents have to perform. So, for example, if the agent has not got enough information to cal-
culate STC, the scheduler will set this task as a priority, because without enough input information the architecture
outputs (actions) might not be accurate. On the other hand, if another agent has requested information about the
current agent, the scheduler will give more priority to this task, so as to offer the requested information quickly
and allow the other user’s agents to get on with their tasks.

For a better understanding of the architecture, it is important to explain how the agents are able to achieve their goals and
improve current tools by using the architecture. However, before explaining this, it is necessary to present the scenario
where agents will be used.
5.2.4. Using the architecture
We have seen the goals, structure and scenario of the use of the architecture. In this section, we are going to explain how

the architecture achieves the main goals and how agents include improvements, thus completing the answers to the re-
search questions that we indicated in the introduction section.

How Agents Calculate and Control Socio-Technical Congruence: Each agent will calculate individual STC values for
each team member, by making use of our approach. This, as explained previously, is an extension of the Kwan et al. approach
[23,22]), which consists of matrix representations of coordination needs and actual coordination; it also makes it possible to
create an importance ranking of the gaps.

The agent will obtain the coordination needs (A process in Fig. 7) by using the Coordination Manager Module to request
the information needed. The Coordination Needs Module does this by requesting the execution of the appropriate plan (set of
actions) from the Plan Generator Module, which sends the plan to the Scheduler to be executed when possible.

Once the external module has sent back the information requested, the Interpreter Module receives this information and
sends it to the Coordination Needs Module, where it is processed and stored in the Knowledge Base (KB). In this case, the
information required is the dependencies that the tasks on which the user is working have with other tasks, along with the
people assigned to the tasks involved and the priority of each task, in order to obtain the task importance. This information
could be extracted from a Project Manager tool, or it may be introduced manually. In the example shown in Fig. 7, the infor-
mation extraction is carried out by using web service technology from a Project Management Tool.

At the same time as the agent starts the process of retrieving coordination needs, it also begins to search for user inter-
actions (B process in Fig. 7) by using the Interaction Manager Module. This is possible since each plan is managed as a
thread, and several threads can be executed at the same time. In the example, this is simplified, in that the agent extracts
interactions only from an email server.



Fig. 7. Module interactions to calculate STC.

244 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
In order to ensure that the agent is specialized in each searching method, a plan (a set of actions that an agent should
perform to achieve a concrete goal) has to be implemented for each method in the Plan Generator Module.

By way of example, an agent might use one plan to extract interactions from an email database, and a different one to
extract interactions from a forum. In this case, the agent executes a plan to obtain interactions from emails. Thus, when
the Interaction Manager Module starts the process, it will send the order to obtain interactions to the Plan Generator, which
will select the plans available that are related to the extraction of interactions (from emails, forums, comments, etc).

Once the search for plans has been executed, the agent will receive the interactions in the aforementioned XML format
through the Interpreter Module, which will in turn send the information to the Interaction Manager Module, which even-
tually stores the data in the Actual Coordination Data Base. Once the agent has gathered sufficient information, it will use
the STC Calculator Module to calculate congruence and store the value obtained in the database (Steps 1 and 2 of the C pro-
cess in Fig. 16). The database can later be used by this module to extract the history of the STC values, in order to check
whether the congruence level is high at that time, and that the coordination needs are therefore being fulfilled.

This module will calculate the STC by considering data belonging to the time interval in which the current dependent
tasks have to be performed. The agent will therefore obtain an STC value each time a task, or a set of tasks, has been per-
formed (see Fig. 8).

The idea is to control congruence when there are dependencies between tasks and where there are consequent coordi-
nation needs between team members. In the example shown in Fig. 17, coordination needs are registered at t1 and t3,
the actual coordination is gathered between t1–t2 and t3–t4, and the STC values are calculated at t2 and t3.

In this example the user is fulfilling all the coordination needs; that is, STC = 1 (STC is a value between 0 and 1). It is as-
sumed that task dependencies are available via a Project Management tool or are manually introduced by, for instance, the
project manager. This can be useful as an indicator of the team members’ coordination level. For example, the agent could
send this information to the Project Manager by using the Information Disseminator Module (Steps 3,4,5 and 6 of the C pro-
cess in Fig. 7) and the manager may check whether there is any problem with this team member.

The information used to calculate STC can otherwise be sent by all the agents to a central repository to obtain the STC
level of the team, the project or the organization if it is needed. This is also an improvement on previous tools, since they
do not take into account the multi-level nature of congruence. A project manager could thus access information related
to one or more team members, or information related to a whole team or a project.

How Agents maintain Socio Technical Congruence: Another goal of the architecture is to maintain the STC. The agents
will attempt to maintain a high level of congruence by following the example in Fig. 8, from t1 to t2. To achieve this goal, the
agents will help users to interact with those people who have coordination dependencies. It is important, at least at the
beginning of a project, to know who needs to be coordinated with whom [31]. This task would appear to be easy in a co-
located team; in a Global Environment, however, in which team members are separated and it is difficult to establish per-
sonal relationships, agents will help team members to get to know the other people. As explained above, the agents will cal-
culate which people have coordination needs with the user, and will also offer useful information such as how to contact,
when it is better to contact (taking into account user preferences) or personal information; all of this will create a more
confident relationship. This information will be extracted from the User Profile Data Base by using the Profile Manager



Fig. 8. STC measure over time.

J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 245
Module. The agent will obtain the other users’ preferences by communicating with the other agents via a request message.
These other agents will respond with a message including the profile of each user, and this information will eventually be
given to the user. To perform this task, the STC Calculator module should first detect a decrease in the user’s STC level, or the
user should request contact information through an implemented tool connected to the agent. For instance, after a user re-
quest has occurred, this module requests from the Plan Generator the specific plan needed to request contact information
from other agents. This plan, as always, is sent to the Scheduler to be executed when possible. Next, when the other agents
receive the request, the Interpreter Module detects that it is an information-request message and sends the content of the
message to the Information Disseminator Module. This module checks which information has been requested, takes it
from the User Profile Data Base, since it is contact information that has been requested, and connects with the Plan Gen-
erator Module and the Scheduler in order to return the information requested. Finally, the requester agent receives the
information and sends it to its Information Disseminator, which is in charge of showing it to the User (see Fig. 9). This tech-
nique is performed to keep team members connected, make interactions possible and therefore help to maintain a high level
of STC. By using this technique, agents will also assist in improving the communication between team members. These ac-
tions that the agents perform make up one of the additional improvements on other implementations in which the tool sim-
ply visualizes STC-related data, but does not perform actions to maintain the level of STC. Moreover, the agents will attempt
to maintain the level of STC by managing the possible gaps.

How Agents detect, analyze and eliminate gaps: The agent architecture has a Knowledge Base that includes data con-
cerning coordination needs, actual coordination, gaps and user profiles. Through its three modules, the Gap Manager Mod-
ule is able to use this information to detect, analyze and perform actions to eliminate gaps.

Firstly, the Gap Detector Module is in charge of checking the existing gaps in real time by using the information stored in
the STC and Gaps Data Base. Once a gap has been detected by this module in the database, it is sent to the Gap Analyzer
Module, in order to analyze whether the gap is sufficiently important for it to be worth disturbing users with extra informa-
tion or tasks. This module analyzes the gaps detected by using calculated weights which, as explained previously, are based
on socio-cultural distance, ongoing communication and task priority. This module finally creates a gap importance table, in
which each gap is associated with its importance value.

The Gap Closer Module will use this value to notify, over time (from t1 to t2 in Fig. 10), the users involved, informing them
of important coordination needs. The number of notifications will be proportional to the importance of the gap detected. The
gap importance has been divided into three levels, in which 0–0.33 is considered to be the Low Level, 0.33–0.66 the Medium
Level and 0.66–1 the High Level.

More specifically, when a gap is detected, the agent will notify the user of this situation, as follows (see Fig. 10):

� If the gap importance is Low (L), the agent will notify the user of this gap once in the middle of the time that the agent
is monitoring (A).

� If the gap importance is Medium (M), the agent will notify the user of this gap at a quarter, and three quarters, of the
time period.

� If the gap importance is High (H), the agent will notify the user of this gap at a quarter, a half, and three quarters, of
the time period.

In the example shown in Fig. 10, the gap is detected at the beginning, but if it were detected at the middle, the remaining
time would be divided in the same way and the notifications would be closer. This gap detection, analysis and notification
are further improvements on other implementations. Other tools in existence at the moment do not consider the importance
of the gaps; neither do they analyze gaps and perform tasks to close them. This is made possible by the autonomy feature of
software agents, which is not included in the other tools; in them it is the user who should analyze and decide which actions
can be performed to close possible gaps.

To summarize, in this Section 5.2.4, we have presented how agents are able to achieve the goals presented in Section
5.2.1. We have also presented some of the improvements that agents introduce with respect to other implementations. In
doing all this, the research questions are completely answered.



Fig. 9. Retrieving contact information.

246 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
6. Validation: Case study at ORIGIN project

The aim of this case study is to show the feasibility of the architecture goals in a real project called ORIGIN, in which dif-
ferent distributed teams need to communicate and coordinate to perform their tasks. This study was performed by devel-
oping a system based on the architecture; this was then integrated into the project. The specific research questions to
which the case study attempts to respond are shown in the following sub-section.
6.1. Research question

In order to validate our approach the following research questions are applied to our case study:

RQ1: Is it feasible to construct a system based on our architecture that will help distributed team members to improve
communication and coordination?
RQ2: Can the tool constructed make use of the architecture modules in order to manage data automatically without user
intervention?

6.2. Organizational context

The specific details of the context in which the case study was performed are explained in this section. We specifically
outline the details of the ORIGIN project, that is, the project into which the system developed was integrated.
6.3. General setting

The ORIGIN project is an initiative of Indra Software Labs (ISL) who, in collaboration with several research groups such as
the Alarcos Research Group, works to offer solutions for globally distributed teams, signifying that new methodologies and
tools are developed to solve or alleviate GSE problems or challenges.

Of all the activities performed in the ORIGIN project, this case study is focused on the development activities performed
by Indra Software Labs, specifically on the communication and coordination activities that ISL perform in the design and
development processes.

The design and development processes are supported mainly by an issue and project-tracking tool called Jira. In the ORI-
GIN project, Jira is the ‘‘connection point’’ between the design and the development team, who are geographically distrib-
uted. Jira will therefore also be our core system with which our system should be integrated and in which coordination
and communication activities will be analyzed by our agent-based system. Another important communication tool will also
be included in the project: the email tool.

The way in which the different teams work with Jira is the following: Information concerning new modules that
should be developed is received by the development team in the form of Jira issues which specify the specific functional
design or functionality that should be developed; in other words, the functional requirements that the module should
fulfill. This process usually includes the participation of several teams on several sites when it is necessary to develop
an integration module, i.e., a module whose main functionality is to integrate two or more tools. The design and devel-
opment of a module that integrates GRv2 tool (requirements management tool) and the Jira tool itself were chosen for
this study.



(A)

(B)

(C)

Fig. 10. Gaps notifications depending on their importance.

J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 247
6.4. ORIGIN framework

The development process in ORIGIN is driven by an agile development framework based on SCRUM. Like other agile
methodologies, this methodology is based on several principles described in the agile manifesto [2].

The two main challenges that the architecture, and therefore the system developed based on the architecture, should sup-
port are: On the one hand, the system should confront changes to coordination and communication needs quickly, since soft-
ware requirements may change continuously as the result of new customer needs or design changes. On the other hand, our
proposal should support distributed communication, since face-to-face communication, which is a key principle, cannot be
performed between distributed teams when the distance is sufficient to hinder it.

As will be shown later, the system developed by using the architecture offers support to both challenges by monitoring
coordination and communication needs and user interactions, sending notifications for important coordination or commu-
nication gaps and offering information about possible ways of closing these gaps.

6.5. Distributed teams setting

During the design and development of the integration module, coordination and communication should be performed by
at least two teams. In our study the process includes three teams; one design team and two development teams.

The first is the development team located in Ciudad Real; it is in charge of developing the sub-module that allows the
tools from GRv2 to be connected. The second team is the development team located in Malaga, which is in charge of devel-
oping the sub-module responsible for enabling integration from EA, while the third is the design team that is located in Ma-
drid. Apart from design, this team is also in charge of controlling the progress of the development, and therefore the progress
of the project.

Table 2 shows how these three teams are geographically distributed. This scenario does not present a typical globally-dis-
tributed project, and aspects such as time or language differences cannot be taken into account. However, Table 2 shows that
the three teams are sufficiently geographically distant to be able to test the architecture, since there are hundreds of
kilometers between each team. These distances were considered to be sufficient to perform the case study, since there
are enough coordination and communication needs between the three teams to make our proposal useful.

Although there are three teams in this case study, not everyone belonging to these teams was available to perform the
case study. That meant that there were 16 participants, distributed as follows: 6 participants from the development team
in Ciudad Real, 4 participants from the development team in Malaga and 6 participants from the design team in Madrid.
These participants were the people interviewed, following the process explained previously. Table 3 shows a list of the
participants (interviewees) and the roles played by each of them in each team.

When considering the available participants and roles, it is important to know that there is a Project Leader (H) who coor-
dinates the work by communicating with team managers of each site via weekly meetings. It must also be pointed out that
each team manager should coordinate the work performed in each team with the help of the Development Manager, who
needs to coordinate with the other Development Managers only for development issues. Bearing these coordination aspects
in mind, in the next section we shall describe the data extraction process.

6.6. Data extraction

This section shows how the data extraction process needed to conduct the case study was performed. In this case, the
data extraction process was performed by using semi-structured interviews: (1) to detect relevant findings that will show
how our tool is able to improve coordination, and (2) to study the technological environment and adapt our tool to it.
Our tool was also used to extract automatically the data needed to perform the STC analysis.



Table 2
Distribution scenario for the case study.

Distance (km s) A B C

Development Team 1 (A) – 217 348
Design Team (B) – 538
Development Team 2 (C) –

248 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
The system will specifically extract data related to coordination, control and communication between the case study
stakeholders, thus retrieving communication interactions, task relationships or control elements, among other things. This
has been made possible thanks to the availability of a set of tools that permit the extraction of these elements. These are:
Jira, which is used to extract communication, coordination and control elements, together with communication tools such
as MS Outlook.

However, before deploying the system based on our architecture, it was necessary to extract some other kinds of infor-
mation regarding the technological environment. That information would give us a general idea of how our system could
extract the aforementioned data automatically, and it was obtained by using semi-structured interviews.

A study of the technological environment enabled us to find out which tools were used for communication and coordi-
nation and which artifacts were used to organize the work. The study was necessary for the implementation of the system,
since this information provided us with the main features of the environment with which the agents should be connected. As
will be shown, all the details extracted here are key aspects that should be considered during the implementation of what
was defined in the architecture as the Integration Service, which connects the architecture to external systems that provide
useful data.

It is essential to study details concerning communication tools and artifacts, coordination tools and artifacts, and control
tools and artifacts. Artifacts are considered to be those elements that store information about tasks and communication,
coordination and control interactions. In this case, we shall consider artifact files, API objects or database data from which
information about tasks and interactions can be extracted by the agent.

The technological environment is made up of the following configuration:
Communication tools and artifacts: The three teams use five principal communication tools. The first is that of email

communication through Microsoft Outlook, which is the most frequently-used means of communication among the team
members in our case. The second is instant communication through the use of the Microsoft Office Communicator; this is
also in common use, although it is not employed as frequently as the former tool. The third is voice communication, also
using the Microsoft Office Communicator (MOC). This third means is not commonly used on a daily basis, since not everyone
has headsets; or it may be that the tool with which to make calls has not been configured. The fourth is the commenting tool
offered by Jira, which allows users to write comments on issues in order to, for example, request details of the issue spec-
ification. The last is that of telephone calls. The project leaders commonly use this communication tool, since ISL provides
them with a company mobile phone. The rest of the team has a voIP telephone that is usually used when important devel-
opment problems arise.

In order to make use of these communication interactions in our analysis, we need to know which artifacts the tools use
to store interactions, thus, as is shown in Table 4, email interactions can be extracted from the outlook email database, and
MOC Instant Messaging interactions can be obtained from conversation files that store conversations in XML format. MOC
Voice calls are also registered by the tool, but are not available for external access. Telephone calls, however, are registered
on invoices, but, although it is possible to extract a set of interactions by checking who called whom from these invoices,
they were not available for this study. Finally, issue comments are stored by Jira in its own database and can be accessed
by using the Jira API.

The Information Relevance and Percentage of use indicators were analyzed, in the effort to discover the overall reliability
that the agent-based system would have in relation to communication analysis.

The analysis of both indicators (information relevance and percentage of use) had to be extracted manually by studying
the organization’s communication interaction options. In this case, the information relevance level was found by considering



Table 3
Interviewees’ roles in the case study.

Interviewee Project role Team

A Team Manager Ciudad Real (A)
B Development Manager Ciudad Real (A)
C Software Engineer Ciudad Real (A)
D Senior Software Engineer Ciudad Real (A)
E Senior Software Engineer Ciudad Real (A)
F Software Engineer Ciudad Real (A)
G Team Manager Madrid (B)
H Project Lead Madrid (B)
I Development Manager Madrid (B)
J Software Engineer Madrid (B)
K Senior Software Engineer Madrid (B)
L Senior Software Engineer Madrid (B)
M Team Manager Malaga (C)
N Development Manager Malaga (C)
O Software Engineer Malaga (C)
P Senior Software Engineer Malaga (C)

J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 249
which types of interactions would provide us with most information about the Jira issue on which the teams were
working.

The percentage of use was obtained by interviewing the team members. In these interviews, people were asked about the
number of times they used each communication type with other distributed team members. This information was then used
to discover the average of the percentages of use of each type of communication interaction, resulting in the percentage
shown in Table 4.

The analysis of these indicators may provide an idea of how reliable the agent-based system will be. An ideal environment
would be one in which all interactions could be registered automatically by the agent and, for each interaction, the task (is-
sue in our case) to which the interaction is related could also be extracted automatically.

However, although this will be possible one day, in our case study, the agent system developed was able to extract inter-
actions automatically from two communication tools of the set: email and issue comments. These tools are supposed to rep-
resent 58% of interactions, which is a high percentage. What is more, both tools have been classified in medium and high
levels of information relevance, signifying that the agent’s actions will be based on reliable data.

Coordination tools and artifacts: Since our agents also analyze coordination, it is important to know which coordination
tools and artifacts are used by the team members to extract sufficient information to perform a reliable analysis.

In the context of this case study, the main tool that the team members use to maintain coordination is that of Jira. Jira
allows the creation of issues and the definition of issue relationships in its effort to coordinate the work. In this case, team
members associate Jira Issues with Tasks or Bugs. When it is necessary to perform a new task, a new issue is usually created,
which also occurs when a bug has to be fixed. From here on, the term issue will therefore be used to refer to tasks or bugs.

Issue coordination takes place by dividing Jira issues into sub-issues, thereby creating a parent–child relationship. Jira
also permits the definition of other relationships between tasks (issues) through the use of the issue-linking feature.

Issue Linking permits the creation of an association between issues on either the same or different JIRA servers. For in-
stance, one issue may duplicate another, or its resolution may depend on that of another. Jira includes the following types
of links:

� relates to/is related to: This relationship means that two issues are related. The reason for the link is not defined.
� duplicates/is duplicated by: This relationship means that an issue duplicates, or is duplicated by, another issue. It

allows the user to know with whom s/he should be coordinated so as not to duplicate work.
� blocks/is blocked by: This relationship defines the order of execution of issues, since it is possible to know which

issues should be resolved or completed, in order to start with another issue that is blocked by the first.
� clones/is cloned by: This link is usually used when two tasks should be carried out in different projects. Rather than

creating a new issue, the existing issue is cloned in the new project.

Jira issues can also be used in task coordination to link team members by using the assignee field. In our project, the pro-
ject leader (Reporter) fills in this field and Jira automatically sends an email to the team member to whom the issue has been
assigned (Assignee). By combining this information (issues assignees and issues links), our agent system is able to extract the
coordination needs that should be fulfilled by team members. This means that an Issue A can, for example, be connected to
an Issue B by a blocking relationship (Issue B is blocked by Issue A), signifying that it is necessary to complete Issue A in order
to complete Issue B. Moreover, taking into account that Issue A is assigned to User A and Issue B is assigned to User B, the
agent will consider that there is a coordination need between User A and User B.



Table 4
Classification of interactions sources at ORIGIN.

Outlook e-mail MOC instant messaging MOC voice calls Telephone calls Issue comments

Artifacts E-mail database Conversation files Calls register file Invoices Jira database
Easily accessible Yes No No No Yes
Information relevance level Medium Medium Low Low High
Percentage of use (%) 35 10 7 25 23

250 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
Control tools and artifacts: In this case study, the principal tool that is used to obtain control elements is Jira, once more.
Jira includes sufficient information to be able to control the progress of the project. In this case, the agent will have at its
disposal the following artifacts with which to extract control data:

� Issue Time control: In order to control the evolution of issues over time, it is possible to extract the time spent on
each issue, the original estimation of time needed to finish each issue, the due date of the issue, the theoretical and
real start date, and the theoretical and real end date.

� Project progress control: Since the design and development process in ORIGIN follow an agile methodology, the pro-
gress of the project can be extracted by checking which issues were planned to be finished in a Sprint. It is also pos-
sible to check at any moment of the Sprint, such as at the end, whether the issues planned for that Sprint have been
finished and closed.

By considering both time and project control, our agent will be able to get together the data it needs to establish the inter-
val of time in which the STC will be controlled, as well as the set of issues that will be controlled for any user. The agent will
achieve this by dividing the time into Sprints, using the start and end date of each sprint to establish the intervals in which
the STC is controlled.

The agent will also extract which issues, and therefore which relationships between issues or tasks, will be controlled by
using the set of issues that are planned to finish in the sprint. Figs. 8 and 10, shown in Section 5.2.4, are therefore translated
by the agent to Figs. 11 and 12.

Fig. 11 shows how the agent will extract the Sprint 1 start and end dates in order to create the first interval of time in
which the STC is controlled and how the chosen issues (A, B and C) will be selected, since these are included in Sprint 1. This
information is also gathered in a similar way from Sprint 2, and so on.

In Fig. 12, the Sprint information, that is, Sprint Start Date (SSD) and Sprint End Date (SED) is also used to obtain the num-
ber of notifications that users will receive, depending on the importance of the gaps. In the example shown in Fig. 12, the SSD
is on 9/1/2012 and the SED is on 9/15/2012. Given that a gap is detected on 9/5/2012, that the gap importance is low and that
there are 10 days until the end of the sprint, the agent will send just one notification at the middle of the interval, that is,
after 5 days.

After a first data extraction step in which data was automatically gathered by the tool we developed, this data was ana-
lyzed. As explained previously, a second data extraction step was performed by using the second interview. The information
obtained from this interview is summarized in the results section.

Since part of the data analyzed was extracted automatically by a tool that has been developed on the basis of our archi-
tecture, this tool and its main features will be shown in the following sub-section before we present the results obtained.

6.7. STCM tool

In this section we show some of the interface and usability aspects of the tool developed, called STCM (Socio-Technical
Congruence Manager), to provide a better understanding of the results. The tool, which was installed in each of the partic-
ipants’ PCs, was designed to include a simple interface hidden in the tray bar of the operating system (see Fig. 13).

The first time the tool is run, the user has to log in by using the same login data used at ISL. Employing the company’s id
allows the user identification to be unified; in other words, the user is the same in Jira, our tool and the other company tools.
After login, the tool shows the user a form (see Fig. 14) in which the following data has to be filled in:

� User Id: Each user (and agent) is identified by a unique id. The agent then uses this id to identify agents and users and
for login aspects. In this case, the id is the same as the one that users have for the company.

� Password: The password is also used for login aspects and is encrypted by the agent. It is also the same password
used in the company.

� Personal Information: This information includes name, surname, city, country and language, along with a profile
photo.

� Working hours: The user should include information about his/her working hours.
� Preferred Contact Hours: From the set of working hours, the user should also include information about when it is

better to contact him/her.



J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 251
� Holidays: This field includes those days on which the user will not be available.
� Alternate Contacts: For those days on which the user will not be available, this field should contain a list of one or

more users that can be contacted.
� Contact Methods: The list of methods by which the user can be contacted.
� Preferred Contact Methods: The user’s favorite contact methods from the list.

Once the profile information has been filled in, the user can access the main window of the tool (Fig. 15). This window
contains four tabs:

� STC and Gaps: This screen, shown in Fig. 15, offers two main functionalities. The first is a graph in which the evolu-
tion of the STC is presented. This graph can be generated for one of the chosen Sprints (in Fig. 15, for the current
Sprint). It is also possible to select several Sprints in order to see a global evolution of STC over time and to control
coordination and communication levels.

Furthermore, at the bottom of the screen the user has a list of unresolved gaps, with the option of resolving them by
choosing a gap and clicking on the Resolve button. This button opens a new window (see Fig. 16) in which the tool shows
tips to help the user to close the gap. These tips include information about how to contact the other users, such as contact
hours, preferred means of contact or alternative contacts when other users may be in a holiday period. The user can also use
our tool to open the Jira Issue by clicking on the Open Issue button.

This screen (the Resolve Gap screen) also includes an option with which to close the gap directly. This option should be
used when interactions for the associated issue were made using other types of media that are not included in the tool scope.
For instance, in this version of the tool, telephone calls are not analyzed, so if the user sees a gap related to ISSUE-X and he/
she knows that interactions for this issue were made by using the telephone, this gap can be directly closed by the user.

� Profile: This screen shows the same information as that displayed in Fig. 14. This screen can be used to update the
user’s profile and preferences.

� Notifications: This tab is used only to display a list of the notifications that have been shown to the user. In this ver-
sion of the tool, the only types of notifications are Gap Notifications, i.e., notifications to alert the user of the existence
of communication or coordination gaps. Notifications in this version of the tool are shown using the Tray System Bar,
as shown in Fig. 17.

� Configuration: This last tab is included to configure the tool. The screen includes the server information and the
number of times that the agent checks the STC values and frequency of notifications.

Having presented the tool used in this case study to obtain the results, these findings will be presented in the following
section.
6.8. Data analysis and results

This section shows the results obtained from this case study by using our tool in the ORIGIN project. More specifically, a
description will be provided of the results obtained in certain specific situations, which show how the tool, and therefore the
architecture, is able to improve communication and coordination in distributed teams.

The results presented in this section and the data used originated from two Sprints, one from 09/01/2012 to 09/16/2012
and the second from 09/17/2012 to 10/04/2012. The first Sprint includes 55 issues and 16 participants: 6 participants from
the development team in Ciudad Real, 4 participants from the development team in Malaga and 6 participants from the
design team in Madrid.
Fig. 11. STC control intervals.



Fig. 12. Gap notifications depending on sprint dates.

Fig. 13. TrayBar Icon.

252 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
Before starting the case study, all the participants were informed via email of the realization of the case study; the mes-
sage told them that during these two sprints they had a new tool at their disposal. They were also provided with an expla-
nation of the main features of the tool and how to use it. Those taking part were invited to employ the tool and take notes on
how useful it was as regards helping them in aspects of communication and coordination.

Although all the participants used the tool during this period of time, it was not possible to obtain sufficient notes from
which reliable results and conclusions could be drawn. This was simply because the people working on the project were busy
during these sprints. A semi-structured interview (available in Appendix III) was therefore also conducted at the end of the
second sprint to elicit the interviewee’s ideas and opinions about how useful the tool was in improving communication and
coordination- The aim was also to contrast the results obtained by the tool with the interviewees’ point of view.

This interview was conducted face-to-face with all the participants in Ciudad Real and the 4 participants in Madrid, and
by phone with the rest, since a face-to-face meeting was not possible.

It is important to note that the STC evolution graphs shown in this section were constructed by considering only those
interactions between users with coordination needs. The graphs therefore show days on which no STC values are registered,
because there were no coordination needs on those days. It is also important to note that this does not mean that the users
have not interacted with other team members. We decided to use this means of considering STC because it is easier to show
the relationship between STC and the gaps detected.

At this point, we will discuss the most relevant answers/comments given by the study participants as regards how our
tool (architecture) may help to improve coordination. We have also included the special situations detected in which the
tool might be useful for coordination. A presentation of the explanations given by some of the interviewees describing
why and how coordination might be improved by using the tool is therefore provided below.

During the first Sprint, one of the participants from the development team in Ciudad Real found that the use of the tool
might help to improve coordination with other team members as follows:

Sometimes, an issue is created (in Jira) that has no relationship with any other issues, and the user starts to work on that
issue. After a time, another issue is created which depends on the first issue created. The user working on the last issue
knows that there is a coordination dependency between the last issue and the first, since this relationship was set when
the last issue was created. However, the first user is not notified about this issue relationship, or about the corresponding
coordination dependency.

The above situation was described by one of the participants when he was asked about coordination problems that this
tool might alleviate. He also said that this kind of situation ‘‘could result in a coordination breakdown and sprint delays’’.

This person went onto explain that our tool might help to avoid this coordination breakdown because ‘‘by using the gap
notifications it is easy to check the relationship between your issues and others and therefore to be aware of the people with
whom you should be coordinated’’. He also said that ‘‘coordination awareness is clearly improved’’.

Based on these comments and the data obtained in the STC evolution graphs, we detected one of the situations in which
this tool/architecture might be useful for improving coordination. This scenario occurs when team members start working
on issues that are not related to other ones (with no coordination needs) and where, for instance, new issues are created and
coordination needs arise in the middle of the Sprint. This situation is quickly managed by our tool/architecture, since new
coordination needs are quickly registered and gaps related to these needs are also notified speedily, especially when the pri-
ority of these related issues is very high (blocker in this case study).

This situation is shown in Fig. 18. Between the 1st and the 6th of September, this user did not have any issues related to
other ones, and no STC values were therefore registered. However, on the 7th of September a new issue was created (ORIGIN-
1334) and this issue had a blocking dependency with one of the user’s issues (ORIGIN-1311). As the user told us in the inter-
view, ‘‘thanks to the quick response of the tool, I was aware of this dependency on the same day as the other issue was
created...’’.



Fig. 14. User profile interface.

J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 253
Moreover, as is shown in the STC Evolution graph in Fig. 18, the user’s STC level started to grow and, given that only one
gap had been detected, there was coordination to resolve these two issues.

Another interviewee pointed out that the tool may help to avoid work overlap since ‘‘by knowing what relationships exist
between your issue and others, you can establish contact with other team members to organize the work between issues
that are closely related’’. This comment can be checked against the data registered on the detected gaps, as is shown in
Fig. 19.

Fig. 19 shows the Gaps screen, where there is a gap between the user and user mjhernandez. This means that these users
should be coordinated and, even more importantly, that they should be closely coordinated, because their issues are linked
by a ‘‘duplicates’’ relationship. This means that there are two issues that specify that the same or a very similar functionality
should be implemented.

This last real example is a clear depiction of a situation in which this tool might be useful for improving coordination.
More specifically, this improvement consists of users being notified quickly about this coordination need. Without this, this



Fig. 15. STCM main window.

254 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
relationship might be set in Jira, but if users are not aware of it then the coordination need might not be fulfilled or it might
be detected late on. In this latter case, the sprint may be delayed, since people would waste time developing modules that
had already been implemented.

One of the design team members told us that, from the point of view of the project manager, this tool might help reduce
the amount of work needed to coordinate team members. In this case study, the design team is in charge of communicating
issue relationships, particularly when these issues are blocker issues (very important) or when the due date to finish the is-
sues is close. In this respect, this person found that when she was going to communicate information about issue relation-
ships, some people already knew this information, since they had seen it in the tool. This confirms that the tool was being
used correctly and, moreover, that it was useful for the participants.

Some interviewees identified that the STC evolution graph may help to facilitate the detection of important coordination
breakdowns, or low levels of coordination. They said that, although by looking at the graph it is not possible to gather why
the STC is high or low, it is easy to check coordination breakdowns or low levels of coordination quickly.

Another interesting situation in which coordination was improved by our tool was detected during the interviews. The
data shown in Fig. 20, which were extracted from one of our interviewees, show a low level of coordination during the first
sprint. However, during the second sprint, we can see how this data changed drastically and that the STC level was high. We
asked the user why this change had taken place, and he replied that obtaining a low STC during the first sprint encouraged
him to improve coordination so as not to obtain a low coordination level and be considered a ‘‘bad’’ worker.

The user also explained that he had improved his STC level by looking at the tool’s recommendations and seeing that the
other users considered issue comments to be one of the preferred ways of maintaining coordination (information offered by
our tool). He then started to coordinate with the other users by using issue comments. We can therefore state that the tool
might be useful in encouraging improvement in coordination.

One of the comments repeated by several interviewees was that periodic gap notifications were considered to be a useful
means of preventing important coordination breakdowns.

In terms of coordination, these are the most relevant user comments/situations that demonstrate how our tool (architec-
ture) is able to improve some of the ORIGIN team members’ coordination activities.



Fig. 16. STCM resolve gap screen.

Fig. 17. STCM notifications in the Tray System Bar.

J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 255
6.9. Threats to validity

This section provides a discussion of the validity of the results presented. The case study has been performed in a distrib-
uted environment but not in a global environment, signifying that possible communication and coordination problems de-
rived from cultural or language differences are limited, or simply do not exist.

We can state that coordination may be low, but, we can also affirm that if the participants have detected some commu-
nication and coordination improvements derived by the use of the tool in a scenario in which problems are few in number,
we can expect that in a global environment with a higher level of communication and coordination problems, the tool, and
therefore the architecture, would be more useful.

Our adapted STC measurement considers, among other things, Socio-Cultural Difference, Temporal Distance and Geo-
graphical distance to adapt them to GSE. In this case study, however, given that all the team members work in the same
country, only Geographical Distance has had an influence on the results obtained.

A further limitation was that the tool was tested for only two Sprints and with only 16 participants. This also limits pos-
sible coordination problems, since the number of issues is small in comparison to larger distributed teams, and two sprints
are not enough to test the architecture in all possible situations. However, these two sprints were sufficient to obtain enough
situations to show the improvements made by our proposal.

In terms of the data extracted, although the results are based on two of the most important communication channels
(emails and issue comments), important communication interactions which were performed using other communication



Fig. 18. Detecting important coordination gaps.

Fig. 19. Detecting gaps that avoid work overlap.

256 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
channels, such as the telephone, were lost during the sprints. This also reduces the reliability of the gap analysis, since agents
can consider gaps to be situations in which interactions are performed by a channel that is not controlled.

Our proposal is also limited with regard to how the data obtained has been processed, since agents do not analyze the
content or semantics of interactions. Thus, if an interaction is performed by email, agents cannot associate this interaction
with a specific task, since the email content is not analyzed.

6.10. Conclusions

This section presents a summary of the conclusions reached from the case study, considering the results obtained and the
threats to their validity.

The case study addresses two main research questions:



Fig. 20. STC level improvement owing to tool features.

J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 257
� RQ1: Is it feasible to construct a system based on our architecture that will help distributed team members to main-
tain communication and coordination?

� RQ2: Can the tool constructed make use of the architecture modules to manage data automatically without user
intervention?

RQ1 and RQ2 have been answered by constructing a tool called STCM, which includes all the features needed to extract
automatically the interactions, tasks, relationships between tasks, etc., so as to be able to calculate STC and find communi-
cation and coordination gaps, with a consequent improvement in coordination and communication.

The ways in which this tool can improve coordination and communication have also been outlined in the results section.
These results allow us to state that the architecture/tool can be useful in distributed environments, such as those of global
software projects in which tasks are very dependent on communication between team members; this communication is al-
most always performed using software tools.

The analysis performed by the agents included in the tool depends entirely on how many data sources can be connected
to our tool (architecture). We can therefore state that this tool (architecture) depends on the capability of the tools that al-
ready exist in the project in terms of extensibility. This is because it is necessary to connect our tool to tools that already exist
to extract data concerning tasks, interactions, etc. In our case, we have seen that Jira is a tool whose extensibility options
permit it to be integrated with almost any kind of tool through the use of its web service and plugin modules.

Prior to applying our tool, it is highly advisable to carry out a study on the means of communication and coordination
used by the team/s, since this will assess whether it is possible to gather sufficient data and determine whether or not
our tool/architecture might be useful; for example, if it is an environment in which only interactions performed by telephone
can be extracted, it may not be worth deploying our architecture.

The analysis of user comments about the use of the tool has allowed us to draw various conclusions. For instance, the
provision of the communication availability of other team members was considered to be one of the most useful features.
The use of STC graphs to summarize the coordination and communication level was seen by project leaders as a simple
way to monitor complex data and information.

With this case study we consider that we are validating the most important aspects of our proposal.
7. Limitations and discussion

In this paper we have presented an Agent Architecture with which to manage Socio Technical Congruence in a Global
Software Project. However, it is important to discuss some of the limitations and the assumptions taken.

One of the main limitations is that we are assuming that a high percentage of the interactions that take place when people
are working are work-related interactions, helping them to coordinate their work. In addition to that limitation, we have to
recognize that we do not extract the content of interactions, for instance the text of an email, to analyze whether the inter-
action is work-related or not.

An important assumption is that agents will have all the information needed to create the coordination dependencies, the
actual coordination and the weights to make a gap ranking. In the text we explain that part of this information could be taken
from Project Management tools, or directly introduced manually by, for instance, the Project Manager. In particular environ-
ments it might be difficult to obtain all the interactions needed to calculate STC (for instance telephone interactions). We do
believe, however, that although it is sometimes impossible to extract all interactions, we may be able to obtain enough inter-
actions (from repositories, forums, emails, instant messaging tools, etc) to apply this technique.



258 J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259
Another limitation of this study is that when comparing our proposal with previously implemented tools related to STC
the set of tools might not be complete because, although great effort to extract the available tools has been made, the search
method was not systematic. We make a similar observation about the methods for measuring STC that have been used.

8. Conclusions and future work

In this paper, measuring Socio-Technical Congruence (STC) has been presented as a technique with which to measure
coordination, by checking the alignment between the coordination needs in a project and the actual coordination performed
by team members. We have also seen how communication interactions can be analyzed through the use of STC.

Measuring STC has consequently been presented as a suitable technique with which it is possible to improve coordination
and communication. These are precisely two of the aspects that present most difficulties in a GSE environment, due to the
problems derived from distance (i.e. different working times, different understandings or difficulties in communicating
efficiently).

This being so, we believe that using this technique in a GSE environment, where people are distributed and communica-
tion is usually performed by the use of technology, would be advisable and beneficial.

It was with this goal in mind that we studied a set of measurements which are currently used to measure STC, along with
a set of tools that make use of STC. We set out to identify their features and check which ones might be the best ones for GSE
and its special characteristics.

From the set of STC measurement studied we can say that congruence analyses have almost always been applied to the
Coding phase of the project; consequently, the technical entity is the source code file which is used most. Moreover, the most
commonly-used dimension for calculating Actual Coordination is communication interaction (for instance, through distribu-
tion lists, comments, IRC communication). We can also say that there are two approaches to calculating STC; one that uses
matrices to represent coordination needs and technical dependencies, and another that employs Social Networks.

On the other hand, if these measurements are going to be used in real-time, there are data, mainly related to the weights
that may be difficult to obtain. For instance, in the Kwan et al. proposal, they use the expertise of team members to weight
the matrices. In a real-time analysis of congruence this information might not be available or, where it is available, it may not
be objective.

We have also concluded that the most appropriate measurement for use in a Global Environment is that of Kwan et al.,
because it is related to major aspects of GSE, such as geographic and temporal distance.

By studying the current STC tools, we concluded that no single tool is designed in its entirety for GSE environments and
we believe all tools need to be adapted. We have thus come up with a set of improvements that might be useful in a GSE
environment when managing STC, since the current versions of the tools studied are not adapted well enough for GSE.

From the result of this study we proposed an Agent Architecture that combines agents’ properties, such as autonomy, pro-
activity or reactivity and Kwan’s measurement for managing STC in a Global Software Project. The proposal sets out to im-
prove current STC tools in some aspects such as the monitoring of STC levels, by performing actions that would maintain a
good level of STC, with ensuing improvement in communication and coordination in GSE. Our belief is that this approach
could help to alleviate some of the problems derived from distance in a GSE environment.

Moreover, use of the architecture in our case study leads us to conclude that agent properties could be very useful in
managing STC, as well as in improving the current tools, by endowing the tools with new features that would also help
to improve productivity and quality.

Concretely, the performed case study showed us that our proposal may improve coordination and communication by: (1)
improving coordination awareness, (2) avoiding overlapping and repeated work, (3) detecting lack of coordination, (4) offer-
ing useful contact information or (5) making easier communication for newcomers.

Acknowledgements

This work has been funded by the PEGASO/MAGO Project (Ministerio de Ciencia e Innovación MICINN, TIN2009-13718-
C02-01) and co-funded by FEDER. It is also supported by ENGLOBAS (PII2I09-0147-8235) and GLOBALIA (PEII11-0291-5274),
funded by Consejería de Educación y Ciencia (Junta de Comunidades de Castilla-La Mancha) and co-funded by FEDER (Spain)
and ORIGIN (IDI-2010043 (1-5)) funded by CDTI and FEDER. This research is also supported, in part, by the Science Founda-
tion Ireland Grant 10/CE/I1855. Finally, we would also to thank the anonymous reviewers for their useful and constructive
comments.

References

[1] A. Abecker, V. Dignum, L.V. Elst, Agent-mediated knowledge management, Lecture Notes in Computer Science, vol. 2926, Springer, 2003.
[2] B. Al-Ani, E. Trainer, R. Ripley, A. Sarma, A.v.d. Hoek, D. Redmiles, Continuous coordination within the context of cooperative and human aspects of

software engineering, in: Proceedings of the 2008 International Workshop on Cooperative and Human Aspects of Software Engineering, ACM, Leipzig,
Germany, 2008, pp. 1–4.

[3] S. Balasubramanian, R.W. Brennan, D.H. Norrie, An architecture for metamorphic control of holonic manufacturing systems, Comput. Ind. 46 (1) (2001)
13–31.

[4] F.P. Brooks, The Mythical Man-Month: Essays on Software Engineering, 20th Aniversary ed., Addison-Wesley, Reading, MA, 1995.

http://refhub.elsevier.com/S0020-0255(14)00015-2/h0005
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0005
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0010
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0010
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0010
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0010
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0015
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0015
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0020
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0020


J. Portillo-Rodríguez et al. / Information Sciences 264 (2014) 230–259 259
[5] B. Bruegge, A.H. Dutoit, Communication metrics for software development, in: Proceedings of the 19th International Conference on Software
Engineering, ACM, Boston, Massachusetts, United States, 1997, pp. 271–281.

[6] E. Carmel, Global Software Teams: Collaborating Across Borders and Time Zones, Prentice Hall PTR, 1999. p. 269.
[7] M. Cataldo, J.D. Herbsleb, K.M. Carley, Socio-technical congruence: a framework for assessing the impact of technical and work dependencies on

software development productivity, in: Proceedings of the Second ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement, ACM, Kaiserslautern, Germany, 2008, pp. 2–11.

[8] M. Cataldo, P.A. Wagstrom, J.D. Herbsleb, K.M. Carley, Identification of coordination requirements: implications for the Design of collaboration and
awareness tools, in: Proceedings of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work, ACM, Banff, Alberta, Canada,
2006, pp. 353–362.

[9] M. Conway, How do committees invent?, Datamation (1968)
[10] C. Cramton, The mutual knowledge problem and its consequences for dispersed collaboration, Organ. Sci. 12 (3) (2001) 346–371.
[11] C.R.B. de Souza, D.F. Redmiles, The awareness network, to whom should i display my actions? And, whose actions should i monitor?, IEEE Trans

Software Eng. 37 (3) (2011) 325–340.
[12] C. Ebert, Global software engineering: distributed development, outsourcing, and supplier management, in: IEEE Computer Society Books, Wiley, Los

Alamitos, USA, 2010.
[13] K. Ehrlich, M. Helander, M. Valetto, G. Davies, C. Williams, An analysis of congruence gaps and their effect on distributed software development, in:

Socio-Technical Congruence Workshop at ICSE conference, Leipzig, Germany, 2008.
[14] E. Gilbert, K. Karahalios, CodeSaw: a social visualization of distributed software development, in: Proceedings of the 11th IFIP TC 13 International

Conference on Human-Computer Interaction – Volume Part II, Springer-Verlag, Rio de Janeiro, Brazil, 2007, pp. 303–316.
[15] B. Gokpinar, W.J. Hopp, S.M.R. Iravani, The impact of misalignment of organizational structure and product architecture on quality in complex product

development, Manage. Sci. 56 (3) (2010) 468–484.
[16] J.D Herbsleb, A. Mockus, T.A. Finholt, R.E. Grinter, Distance, dependencies and delay in a global collaboration, in: ACM conference on Computer

supported Cooperative Work, ACM, New York, NY, USA, 2000.
[17] P. Hinds, C. McGrath, Structures that work: social structure, work structure and coordination ease in geographically distributed teams, in: Proceedings

of the 2006 20th Anniversary Conference on Computer Supported Cooperative Work, ACM, Banff, Alberta, Canada, 2006, pp. 343–352.
[18] A.v.d. Hoek, D. Redmiles, P. Dourish, A. Sarma, R.S. Filho, R.d. Souza, Continuous coordination: a new paradigm for collaborative software engineering

tools, IEE Semin. Digests 2004 (902) (2004) 29–36.
[19] G. Hofstede, G. Hofstede, G. Hofstede, Cultures and Organizations: Software of the Mind, McGraw-Hill, 2004.
[20] J. Jensen, Using an Intelligent Agent to Enhance Search Engine Performance, 2002 June. <http://www.firstmonday.dk/issues/issue2_3/jansen/

index.html>.
[21] A.A. Keshlaf, S. Riddle, Risk management for web and distributed software development projects, in: Fifth International Conference on Internet

Monitoring and Protection, Barcelona, Spain, 2010, pp. 22–28.
[22] I. Kwan, A. Schr, D. Damian, Does socio-technical congruence have an effect on software build success? A study of coordination in a software project,

IEEE Comput. Soc. (2011) 1–20.
[23] I. Kwan, A. Schr, D. Damian, A Weighted congruence measure, in: Workshop on SocioTechnical Congruence, 2009, pp. 1–4.
[24] A. Powell, G. Piccoli, B. Ives, Virtual teams: a review of current literature and directions for future research, SIGMIS Database 35 (1) (2004) 6–36.
[25] A. Sarma, J. Herbsleb, A.v.d. Hoek, Challenges in Measuring, Understanding, and Achieving Social-Technical Congruence, 2008.
[26] A. Sarma, L. Maccherone, P. Wagstrom, J. Herbsleb, Tesseract: Interactive visual exploration of socio-technical relationships in software development,

in: Proceedings of the 31st International Conference on Software Engineering, IEEE Computer, Society, 2009, pp. 23–33.
[27] B.F. Sebastiao, R.B.d.S. Cleidson, F.R. David, Exploring the Relationship between dependencies and coordination to support global software

development projects, in: ICGSE ‘06. International Conference on Global Software Engineering, 2006, 2006.
[28] H. Spanjers, M.t. Huurneç, B. Graaf, M. Lormans, D. Bendas, R. van, Tool support for distributed software engineering, in: International Conference on

Global Software Engineering (ICGSE’06), Florianopolis, Brazil, 2006, pp. 187–198.
[29] E. Trainer, S. Quirk, C.D. Souza, D. Redmiles, Bridging the gap between technical and social dependencies with Ariadne, in: Proceedings of the 2005

OOPSLA Workshop on Eclipse Technology eXchange Eclipse 05, 2055, pp. 26–30.
[30] G. Valetto, S. Chulani, C. Williams, Balancing the value and risk of socio-technical congruence, in: Proc. Socio-Technical Congruence Workshop at ICSE,

2008.
[31] G. Valetto, S. Chulani, C. Williams, Balancing the value and risk of socio-technical congruence, in: Proceedings of the ICSE Workshop on Socio-Technical

Congruence (STC 2008), Leipzig, Germany, 2008.
[32] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Wegman, C. Williams, Using Software repositories to investigate socio-technical congruence in

development projects, in: Proceedings of the 29th International Conference on Software Engineering Workshops, IEEE Computer, Society, 2007, pp. 25.
[33] G. Valetto, M. Helander, K. Ehrlich, S. Chulani, M. Wegman, C. Williams, Using software repositories to investigate socio-technical congruence in

development projects, in: Proceedings of the Fourth International Workshop on Mining Software Repositories, IEEE Computer, Society, 2007, pp. 25.
[34] M.J. Wooldridge, N.R. Jennings, Intelligent agents: theory and practice, in: Knowledge Engineering Review, vol. 10(2), Cambridge Univ Press, 1995.
[35] G. Zacharia, A. Moukas, P. Maes, Collaborative reputation mechanisms for electronic marketplaces, Decis. Support Syst. 29 (4) (2000) 371–388.

http://refhub.elsevier.com/S0020-0255(14)00015-2/h0025
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0025
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0025
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0030
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0030
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0035
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0035
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0035
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0035
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0040
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0040
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0040
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0040
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0045
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0050
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0055
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0055
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0060
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0060
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0060
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0070
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0070
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0070
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0075
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0075
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0080
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0080
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0080
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0085
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0085
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0085
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0090
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0090
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0095
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0095
http://www.firstmonday.dk/issues/issue2_3/jansen/index.html
http://www.firstmonday.dk/issues/issue2_3/jansen/index.html
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0110
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0110
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0120
http://refhub.elsevier.com/S0020-0255(14)00015-2/h0175

	Using agents to manage Socio-Technical Congruence in a Global Software Engineering project
	1 Introduction
	2 Congruence, coordination and communication
	3 Measuring Socio-Technical Congruence: Pros and cons
	4 Related work: Measurements and tools
	4.1 Socio-Technical Congruence measurements
	4.2 Tools supporting Socio-Technical Congruence

	5 Proposal: An agent architecture to manage Socio-Technical Congruence
	5.1 Using agents to measure STC
	5.2 An agent architecture to manage Socio-Technical Congruence
	5.2.1 Architecture goals
	5.2.2 Scenario
	5.2.3 Architecture structure
	5.2.4 Using the architecture


	6 Validation: Case study at ORIGIN project
	6.1 Research question
	6.2 Organizational context
	6.3 General setting
	6.4 ORIGIN framework
	6.5 Distributed teams setting
	6.6 Data extraction
	6.7 STCM tool
	6.8 Data analysis and results
	6.9 Threats to validity
	6.10 Conclusions

	7 Limitations and discussion
	8 Conclusions and future work
	Acknowledgements
	References


